Hydrophobic Interaction of mer-Tris(α -amino acidato)cobalt(III) with Tetrabutylammonium Ion

Yasuki Yoshimura

Laboratory of Chemistry, Faculty of Humanities and Social Sciences, Iwate University, Ueda, Morioka 020-8550

(Received January 13, 1999)

An interaction of NaBr, NH₄Br, Me₄NBr, Et₄NBr, Pr₄NBr, Bu₄NBr, and NaBPh₄ with mer-(+)-tris(L-alaninato)-cobalt(III) (mer-(+)-[Co(L-ala)₃]) was examined by estimating the standard enthalpy (ΔH_{tr}°) and entropy of transfer (ΔS_{tr}°) of mer-(+)-[Co(L-ala)₃] from water to the salt solutions on the basis of the temperature dependence of solubility. A difference in correlation between ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ demonstrated that while NaBr and NH₄NBr increase the solubility of mer-(+)-[Co(L-ala)₃] by hydrophilic interaction, Pr₄NBr, Bu₄NBr, and NaBPh₄ increase the solubility of mer-(+)-[Co(L-ala)₃] by hydrophobic interaction. On the basis of this finding, ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ of the transfer from water to aqueous Bu₄NBr solution for the mer-tris(aniono)cobalt(III) of glycine (glyH), L-alanine (alaH), L-serine (serH), DL-2-aminobutylic acid (abaH), DL-norvaline (nvalH), L-valine (valH), and L-leucine (leuH) led to the conclusion that hydrophobicity of the amino acids increases in the order of glyH < serH < alaH < abaH < nvalH < valH < leuH. This conclusion is compared with the hydrophobicity order reported in the literature.

As a model to clarify an interaction between proteins and water, various properties of amino acids1-6) or small peptides⁷⁻¹⁰⁾ in aqueous solutions have been examined. In these approaches, a contribution of side chains of amino acids to the properties has become of interest. Amino acids exist mainly as zwitterions in aqueous solutions and the contribution of side chains is mostly estimated by subtracting the properties of glycine (glyH) from the properties of any amino acids.^{2,5)} But it has been suggested that an electrostatic interaction of the ionic end groups (-NH₃⁺ and -COO⁻) of the glyH zwitterion with water molecules is stronger than the interaction of other amino acids. 1,3) In addition, it is pointed out that the contribution of the ionic end groups to some properties of amino acids in aqueous solutions is much larger than the contribution of side chains.^{2,6)} Thus, since an interaction between side chains of amino acids and water molecules is strongly affected by the ionic end groups of their zwitterions, amino acids themselves are not necessarily adequate model compounds to examine the hydration of amino acid residues of proteins.

Nitta et al. 11,12) have investigated partial molar volumes and adiabatic compressibilities of *N*-acetyl-amino acid amides in dilute aqueous solutions from these standpoints and found that the influence of hydrogen bond formation of amide groups with water molecules on the hydration of side chains of these compounds is smaller than the influence of the electrostriction of the ionic end groups of the corresponding amino acid zwitterions.

I have investigated the dissolution behavior in water¹³⁾ and salt effects on the solubility^{14,15)} of tris(α -amino acidato)-cobalt(III) ([Co(aa)₃]). The amino acid in this chelate binds to the cobalt ion through both the amino nitrogen atom and the oxygen atom of the carboxylato group, and loses the

amphotericity that causes the zwitterion formation. Thus, it would be expected that [Co(aa)₃] could be a suitable model compound for amino acid residues of proteins.

Tris(L-amino acidato)cobalt(III) has two geometric isomers (mer- and fac-isomers) and each geometric isomer has two diastereoisomers (Λ - and Δ -isomers). In this paper the Λ - and Δ -isomers are expressed as (+)- and (-)-isomers, which represent dextrorotatory and levorotatory at 589 nm, respectively. In general, the mer-isomer is more soluble than the fac-isomer and the (-)-isomer is more soluble than the (+)-isomer. The preceding investigation found that the moderately soluble mer-(+)-isomer is the most suitable isomer for an examination of solute–solvent interaction using the solubility measurement technique. 15

As the first step to examine interactions between side chains of amino acids and water by using [Co(aa)₃] as the model compound, the solubilities of mer-(+)-tris(aniono)-cobalt(III) of various L-amino acids (mer-(+)-[Co(L-aa)₃]) in water and in aqueous solutions of hydrophobic salts such as tetraalkylammonium salts were measured over the temperature range of 5 to 40 °C. From these data, the standard enthalpy (ΔH_{tr}°) and entropy of transfer (ΔS_{tr}°) from water to the aqueous salt solutions for mer-(+)-[Co(L-aa)₃] were calculated. Since the tetraalkylammonium salts have been used to examine the strength of hydrophobic interactions, $^{16-19}$) it may be expected that ΔH_{tr}° and ΔS_{tr}° would give information on the hydrophobicity of amino acid side chains.

The hydrophobic interaction is one important factor that contributes to the folded conformation characteristic of proteins²⁰⁾ and the hydrophobicity of amino acid side chains has been reported.²¹⁾ The validity of this approach in which *mer*-(+)-[Co(L-aa)₃] is used as the model compound for side chains of amino acid residues of proteins is discussed by

comparing these estimates of the hydrophobicity with the reported one.

Experimental

The synthesis and separation of mer-(+)-[Co(L-aa)₃] of glyH, L-alanine (alaH), L-valine (valH), and L-leucine (leuH) were done in a manner similar to that reported in the literature. $^{22-24}$ These chelates are abbreviated as mer-[Co(gly)₃], mer-(+)-[Co(L-ala)₃], mer-(+)-[Co(L-val)₃], and mer-(+)-[Co(L-leu)₃] respectively. The separation of the diastereoisomers of mer-[Co(L-val)₃] and mer-[Co(L-leu)₃] was done by column chromatography on Florisil instead of the alumina reported in the above literature.

The separating ability of Florisil was superior to the ability of alumina. When mer-[Co(L-leu)₃] was eluted with 85% ethanol, the separation between the first and the second bands was satisfactory enough to isolate pure mer-(-)-[Co(L-leu)₃] by slowly evaporating the first eluent. The (+)-isomer was isolated by slow addition of water to the second eluent. But the separation of two bands was incomplete in the case of mer-[Co(L-val)₃]. The leading fractions from a number of preparations were collected and recromatographed once again, and pure fractions were carefully collected by monitoring the absorption spectrum of the eluent. The (-)-isomer was carefully crystallized by slow evaporation of these collections. When the trailing fractions from these preparations were concentrated to half, crude materials of the (+)-isomer were crystallized. The (+)-isomer could be purified by recrystallization from water. The absorption spectra of the chelates thus obtained agreed with the spectra reported in the literature.²⁴⁾

The less soluble isomers of mer-[Co(aa)₃] of DL-2-amino-butylic acid (abaH) and DL-norvaline (nvalH) were synthesized and separated in the same manner as those used for mer-(+)-[Co(Lval)₃]. Since the antipode of $mer-(+)-[Co(L-aa)_3]$ is mer-(-)-[Co(D-aa)₃], ^{13b)} the less soluble isomers of mer-[Co(DL-aba)₃] and mer-[Co(DL-nval)₃] are racemates, that is, equimolar mixtures of $mer-(-)-[Co(D-aa)_3]$ and $mer-(+)-[Co(L-aa)_3]$. These isomers are abbreviated as $mer-(-+)-[Co(DL-aba)_3]$ and mer-(-+)-[Co(DL-nval)₃], respectively. The spectroscopic properties and analytical data of these chelates are as follows: for mer-(-+)-[Co(DL-aba)₃]: $(\lambda_{max}/nm, \varepsilon_{max}/(10 \text{ dm}^2 \text{ mol}^{-1}))$: (539, 105); (373, 161). Calcd for Co(C₄H₈NO₂)₃·3H₂O: C, 34.4; H, 7.2; N, 10.0%. Found: C, 34.3; H, 7.2; N, 10.1%. For mer-(-+)-[Co(DL-nval)₃]: $(\lambda_{\text{max}}/\text{nm}, \varepsilon_{\text{max}}/(10 \text{ dm}^2 \text{ mol}^{-1}))$: (534, 105); (373, 163). Calcd for $Co(C_5H_{10}NO_2)_3 \cdot 2H_2O$: C, 40.6; H, 7.7; N, 9.5%. Found: C, 40.2; H, 7.4; N, 9.5%.

The solubility in $\operatorname{mol} \operatorname{kg}^{-1}(S_{\mathrm{m}})$, which was defined as the moles of chelate molecules in 1 kg of water or an aqueous salt mixture, and the solubility in $\operatorname{mol} \operatorname{dm}^{-3}(S_{\mathrm{c}})$ at 25 °C were measured as previously reported. The chelate concentration in saturated solution used to calculate the solubility was determined spectrophotometrically by measuring the absorbance at a wavelength in the vicinity of 530 to 540 nm, except for the experiment for $\operatorname{mer}^{-}(+)$ -[Co(L-leu)₃] in water, in which the absorbance at 220 nm was measured because of low solubility of $\operatorname{mer}^{-}(+)$ -[Co(L-leu)₃] in water. The solubility measurement was repeated at least four times at each temperature and the errors defined as the deviations at 95% confidence levels were less than 2% of the mean values of these individual experimental values in most cases.

Commercial ammonium bromide (NH₄Br), tetramethylammonium bromide (Me₄NBr), tetraethylammonium bromide (Et₄NBr), tetrapropylammonium bromide (Pr₄NBr), tetrabuthylammonium bromide (Bu₄NBr), and sodium tetraphenylborate (NaBPh₄) (reagent grade, Wako Chemical Industries Ltd.) were used with-

out further purification. The working solution of each salt for the solubility measurement was prepared at 25 °C and the salt concentration was calculated in both mol kg⁻¹ and mol dm⁻³ (m_s and c_s , respectively). Redistilled water was used.

Results and Discussion

Solubility, Standard Enthalpy, and Entropy of Dissolution of mer-(+)-[Co(L-aa)₃] in Water. The values for the solubilities ($S_{\rm m}^{\circ}$ and $S_{\rm c}^{\circ}$) in water of mer-[Co(gly)₃], mer-(+)-[Co(L- ser)₃], mer-(-+)-[Co(DL- aba)₃], mer-(+)-[Co(L-leu)₃] are tabulated in Table 1. Since the solubilities of these chelates are fairly small, these saturated solutions may be regarded as being ideal dilute solutions with respect to the chelates. Thus, without an activity correction the standard enthalpy ($\Delta H_{\rm s}^{\circ}$) and entropy of dissolution ($\Delta S_{\rm s}^{\circ}$) in water at 25 °C were estimated from the temperature dependence of $\ln S_{\rm m}^{\circ}$ illustrated in Fig. 1, where $\ln S_{\rm m}^{\circ}$ is plotted against 1/T, in the same manner as previously reported.²⁵⁾ The standard state for the chelate in solution is 1 $mol kg^{-1}$.

The values for $\Delta H_{\rm s}^{\circ}$ and $T\Delta S_{\rm s}^{\circ}$ of the adopted chelates in water at 25 °C are listed in Table 2, where the values of mer-(+)-[Co(L-ala)₃] estimated from the $S_{\rm m}^{\circ}$ data obtained in the previous study¹⁵ are also included. While both $\Delta H_{\rm s}^{\circ}$ and $T\Delta S_{\rm s}^{\circ}$ of mer-[Co(gly)₃], mer-(+)-[Co(L-ala)₃], mer-(+)-[Co(L-ser)₃], and mer-(-+)-[Co(DL-aba)₃] are positive, $\Delta H_{\rm s}^{\circ}$ and $T\Delta S_{\rm s}^{\circ}$ of mer-(-+)-[Co(DL-nval)₃], mer-(+)-[Co(L-val)₃], and mer-(+)-[Co(L-leu)₃] are negative. It is

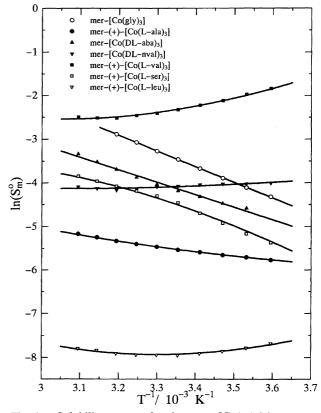


Fig. 1. Solubility curves of various mer-[Co(aa)₃] in water illustrated by plotting $\ln S_{\rm m}^{\circ}$ against 1/T.

Table 1. Solubilities $(S_n^a$ and $S_o^c)$ of $mer-[Co(gly)_3]$, $mer-(+)-[Co(L-ser)_3]$, $mer-(-+)-[Co(DL-aba)_3]$, $mer-(-+)-[Co(DL-nval)_3]$, $mer-(+)-[Co(L-val)_3]$,

T/°C	mer-[Co(gly)3]	mer-(+)-[Co(L-ser) ₃]	$mer-(-+)-[Co(DL-aba)_3]$	$mer-(-+)-[Co(DL-nval)_3]$	mer-(+)-[Co(L-val) ₃]	mer-(+)-[Co(L-leu) ₃]
	$S_{\rm m}^{\rm o}/10^{-2}~{\rm molkg^{-1}}$	$S_{\rm m}^{\rm o}/10^{-2}~{\rm molkg^{-1}}$	$S_{\rm m}^{\rm o}/10^{-2}~{\rm molkg^{-1}}$	$S_{\rm m}^{\rm o}/10^{-2}~{\rm molkg^{-1}}$	$S_{\rm m}^{\rm o}/10^{-1}~{\rm molkg^{-1}}$	$S_{\rm m}^{\rm o}/10^{-4}~{\rm molkg^{-1}}$
5	1.33(0.01)	0.467(0.003)		1.83(0.01)	1.59(0.01)	4.63(0.03)
10	1.64(0.02)	0.573(0.005)	1.02(0.01)	1.79(0.01)	1.39(0.01)	4.18(0.07)
15	2.04(0.02)	0.727(0.006)	1.14(0.01)	1.78(0.01)	1.20(0.01)	3.88(0.05)
20	2.54(0.04)	0.912(0.002)	1.33(0.01)	1.75(0.02)	1.08(0.01)	3.69(0.06)
25	3.14(0.01)	1.16(0.01)	1.52(0.01)	1.70(0.02)	0.974(0.006)	3.53(0.03)
30	3.78(0.01)	1.35(0.01)	1.77(0.01)	1.66(0.01)	0.897(0.009)	3.55(0.01)
35	4.63(0.01)	1.52(0.01)	2.08(0.01)	1.57(0.01)	0.851(0.004)	3.57(0.02)
40	5.56(0.05)	1.70(0.01)	2.49(0.02)	1.55(0.01)	0.801(0.007)	3.68(0.02)
45		1.90(0.02)	2.96(0.05)	1.61(0.02)	0.805(0.006)	3.96(0.06)
20		2.13(0.01)	3.55(0.04)	1.67(0.02)	0.822(0.008)	4.14(0.05)
	$S_{\rm c}^{\rm o}/10^{-2}~{\rm moldm^{-3}}$	$S_{\rm c}^{\rm o}/10^{-2}~{\rm mol~dm^{-3}}$	$S_{\rm c}^{\rm o}/10^{-2}~{\rm moldm^{-3}}$	$S_{\rm c}^{\rm o}/10^{-2}~{\rm moldm^{-3}}$	$S_{\rm c}^{\rm o}/10^{-1}~{\rm mol}{\rm dm}^{-3}$	$S_c^{\rm o}/10^{-4}~{\rm mol}{\rm dm}^{-3}$
25	3.21(0.01)	1.18(0.01)	1.56(0.01)	1.74(0.02)	0.981(0.010)	3.62(0.02)
a) Errors	defined as 95% confidence le	a) Errors defined as 95% confidence levels are given in parentheses.				

Table 2. Standard Enthalpy (ΔH_s°) and Entropy of Dissolution (ΔS_s°) in Water at 25 °C for mer-[Co(gly)₃], mer-(+)-[Co(L-ala)₃], mer-(+)-[Co(L-ser)₃], mer-(-+)-[Co(DL-nval)₃], mer-(+)-[Co(L-val)₃], mer-(+)-[Co(L-leu)₃]

Compound	$\Delta H_{\rm s}^{\circ}/{\rm kJmol}^{-1}$	$T\Delta S_s^{\circ}/\text{kJ mol}^{-1}$
mer-[Co(gly) ₃]	29.8	21.2
$mer-(+)-[Co(L-ala)_3]^{a)}$	9.1	-4.6
mer-(+)-[Co(L-ser) ₃]	26.1	15.0
mer - $(-+)$ - $[Co(DL-aba)_3]$	22.1	11.7
$mer-(-+)-[Co(DL-nval)_3]$	-5.2	-15.3
$mer-(+)-[Co(L-val)_3]$	-13.7	-19.5
mer-(+)-[Co(L-leu) ₃]	-2.6	-22.3

a) Calculated from the solubility data reported in Ref. 15.

interesting to compare the dissolution behavior of *mer*-[Co-(aa)₃] in water with the behavior of *fac*-[Co(aa)₃]. The comparison will be reported elsewhere in connection with a difference in the solubilities of the diastereoisomers of *mer*-[Co(aa)₃].

Effects of Various Tetraalkylammonium Bromides and NaBPh₄ on the Solubility of mer-(+)-[Co(L-ala)₃]. The values for S_m and S_c of mer-(+)-[Co(L-ala)₃] in aqueous NH₄Br, Me₄NBr, Et₄NBr, Pr₄NBr, Bu₄NBr, and NaBPh₄ solutions are tabulated in Table 3. To demonstrate any change in the solubility caused by an addition of the salts, $\log (S_c^\circ/S_c)$ is plotted against c_s in Fig. 2, where the effect of NaBr¹⁵ is

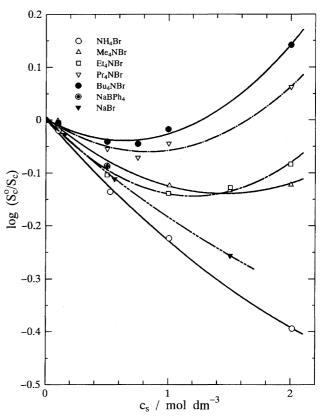


Fig. 2. Salt effect on mer-(+)-[Co(L-ala)₃] depicted by plotting $\log (S_c^{\circ}/S_c)$ against c_s . The data in aqueous NaBr solutions were taken from Ref. 15.

Table 3. Solubilities (S_m and S_c) of mer-(+)-[Co(L-ala)₃] in aqueous NH₄Br, Me₄NBr, Et₄NBr, Pr₄NBr, Bu₄NBr, and NaBPh₄ Solutions^{a)}

T/°C	0.103	NH ₄ Br conce 0.541	entration m_s/n		220 ().099		e ₄ NBr o		ntration m_s /1.142	$mol kg^{-1}$ 1.821	2.607
	0.103		0^{-3} mol kg^-							⁻³ mol kg ⁻		2.007
5	3.35(0.01)				(0.01) 3.2	0(0.02)	3.0	5(0.04)			4.35(0.03)	4.21(0.02)
10	3.51(0.01)					5(0.01)		2(0.03)			4.50(0.02)	4.31(0.02)
15	3.73(0.03)					6(0.05)		1(0.03)			4.67(0.02)	4.50(0.02)
20	3.94(0.03					6(0.06)		3(0.01)			4.87(0.02)	4.70(0.02)
25	4.17(0.01					7(0.02)	4.7	7(0.03)	5.0	09(0.03)	5.10(0.02)	4.89(0.02)
30	4.43(0.04	5.61(0.0	01) 6.68(0	.05) 9.25((0.03) 4.2	6(0.02)	5.0	7(0.02)	5.3	88(0.04)	5.43(0.05)	5.18(0.04)
35	4.78(0.02	5.98(0.0	03) 7.12(0	.04) 9.67((0.07) 4.5	6(0.03)	5.4	1(0.04)	5.7	76(0.02)	5.75(0.03)	5.51(0.04)
		c_{s}	$/mol dm^{-3}$						$c_{\rm s}/{\rm n}$	$100 \mathrm{dm}^{-3}$		
	0.103	0.527	7 1.00)13 (0.098	0	0.504		1.008	1.503	2.002
		S _c /10	0^{-3}mol dm^-	3				S	c/10	3 mol dm ⁻	3	
25	4.24(0.02)	5.53(0.0	03) 6.77(0	.03) 10.0	(0.1) 4.0	6(0.02)	4.9	5(0.03)	5.3	88(0.03)	5.50(0.02)	5.36(0.02)
T/°C		Et ₄ NBr co	ncentration n	$i_{\rm s}/{ m molkg}^{-1}$				Pr ₄ NI	3r cor	centration	$m_{\rm s}/{ m molkg^{-1}}$	
	0.102	0.549	1.211	2.032	3.024	0.1	05	0.57	71	0.913	1.313	3.726
		S_{m}	$/10^{-3}$ mol k	g-1					$S_{\rm m}$	$10^{-3} \text{ mol } 1$	cg^{-1}	
5	3.24(0.01)	4.03(0.03)	4.34(0.01)	4.11(0.03)	3.57(0.02)	3.20(0.03)	3.51(0	.03)	3.47(0.02)	3.17(0.01)	2.33(0.02)
10	3.42(0.01)	4.22(0.01)	4.53(0.01)	4.29(0.03)	3.74(0.04)			3.70(0		3.71(0.03)		2.50(0.04)
15	3.62(0.03)	4.40(0.01)	4.76(0.03)	4.49(0.01)	3.96(0.02)	3.58(0.03)	3.92(0	.02)	3.95(0.03)		2.72(0.01)
20	3.84(0.02)	4.69(0.03)	4.99(0.01)	4.75(0.01)				4.18(0	.01)	4.26(0.04)		2.99(0.02)
25	4.07(0.01)	4.95(0.01)	5.27(0.02)	5.04(0.04)				4.44(0		4.58(0.04)		3.21(0.02)
30	4.34(0.03)	5.29(0.05)	5.59(0.04)	5.36(0.03)	4.78(0.02)			4.77(0		4.94(0.01)	, ,	3.58(0.02)
35	4.64(0.02)	5.62(0.03)	5.98(0.07)	5.75(0.06)	5.14(0.01)	4.70(0.02)	5.12(0		5.33(0.02)		3.93(0.06)
			$c_{\rm s}/{\rm moldm}^{-3}$	•						$c_{ m s}/{ m moldm}^-$	-3	
	0.100	0.501	1.000	1.507	2.000	0.1	02	0.50		0.751	1.002	2.001
	$\frac{S_c/10^{-3} \text{ mol dm}^{-3}}{4.16(0.01) 5.14(0.01) 5.57(0.02) 5.43(0.03) 4.9}$									10^{-3}mol d		
25	4.16(0.01)					4.09(0.03)	4.59(0	.05)	4.77(0.05)	4.49(0.03)	3.50(0.02)
$T/^{\circ}$										ntration m _s /m		
	0.104 0.590 0.967 1			1.423		5.009)	0.104 0.582			2	
			$S_{\rm m}/$	$10^{-3} \mathrm{mol kg}$	-1					$S_{\rm m}/10$	$0^{-3} \operatorname{mol} \mathrm{kg}^{-1}$	
5			24(0.03)						3.14(0.05)	3.30(0.0	01)
10				3.40(0.02)						0.04)	3.57(0.0	
15				3.71(0.02)	3.36(0.02		.50(0.0			0.02)	3.85(0.0	
20				4.00(0.03)	3.67(0.02		.67(0.0			0.04)	4.22(0.0	
25				4.33(0.04)	4.03(0.02		.81(0.0		4.06(,	4.73(0.0	
30				4.77(0.02)	4.38(0.00		.10(0.0		4.44(0.02)	5.13(0.0	04)
35		.03) 5.1		5.16(0.02)	4.75(0.02		.32(0.0					
40				$\frac{5.57(0.03)}{\text{s/mol dm}^{-3}}$	5.18(0.03) 3	.54(0.0	<u> </u>			mol dm ⁻³	
	0.10)1 ·	0.501	0.751	1.000		2.000)	0.1		mol dm 0.500)
		/1		$\frac{0.731}{0^{-3} \text{ mol dm}}$			2.000		0.1		$^{-3}$ mol dm ⁻³	
25	4.10(0	.01) 4.4		4.49(0.04)	4.21(0.02	2) 2	.92(0.0	 04)	4.14(4.94(0.0	05)
								/				/

a) Errors defined as 95% confidence levels are given in parentheses.

also displayed.

In all the cases, the $\log{(S_{\rm c}^{\circ}/S_{\rm c})}$ values are negative up to $c_{\rm s}$ of 1 mol dm⁻³ (salting-in effect). While the salting-in effect of NH₄Br and NaBr increases monotonously with an increase in $c_{\rm s}$, the curves illustrating the effect of tetra-alkylammonium bromides pass through a minimum. The salting-in effect in the low $c_{\rm s}$ region increases in the order of Bu₄NBr < Pr₄NBr < Me₄NBr < Et₄NBr \approx NaBPh₄ < NaBr < NH₄Br.

Since these $\log (S_c^{\circ}/S_c)$ values are connected with the stan-

dard free energy of transfer $(\Delta G_{\rm tr}^{\circ})$ from water to the aqueous salt solutions for mer-(+)-[Co(L-ala)₃], the salting-in effect should be discussed from the standpoint of a contribution of enthalpy and entropy factors. Thus, the standard enthalpy $(\Delta H_{\rm tr}^{\circ})$ and entropy of transfer $(\Delta S_{\rm tr}^{\circ})$ from water to the aqueous salt solutions for mer-(+)-[Co(L-ala)₃] was calculated by

$$\Delta Y_{\rm tr}^{\circ} = \Delta Y_{\rm s}^{\circ}({\rm salt}) - \Delta Y_{\rm s}^{\circ}({\rm water}),$$
 (1)

where Y denotes enthalpy or entropy and ΔY_s° (salt) describes

 ΔH_s° or ΔS_s° of mer-(+)-[Co(L-ala)₃] in the aqueous salt solutions estimated from the temperature dependence of $\ln S_m$.

The resulting values for $\Delta H_{\rm tr}^{\circ}$ are plotted against $T\Delta S_{\rm tr}^{\circ}$ in Fig. 3. Figure 3 indicates that the contribution of $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ to the salting-in effect may be classified into two categories by distinguishable characteristics. The first group is composed of NaBr and NH₄Br. In this group, both $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ are negative, and decrease with increasing $m_{\rm s}$ (see Fig. 3). As shown by the broken line in Fig. 3, a linear correlation between $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ is found and expressed by

$$\Delta H_{\rm tr}^{\circ} = 1.71 T \Delta S_{\rm tr}^{\circ} \quad (\gamma = 0.9801),$$
 (2)

where γ is the correlation coefficient. Equation 2 is settled by applying the least-squares analysis not only to the data for NaBr and NH₄Br but to the data for NaNO₃, NaCl, and NaI reported in the preceding investigation, ¹⁵⁾ and indicates that the salting-in effect of these salts is brought about by the decrease in $\Delta H_{\rm tr}^{\circ}$. These findings suggest that the salting-in effect of NaBr, NH₄Br, NaNO₃, NaCl, and NaI on *mer*(+)-[Co(L-ala)₃] has a common origin, which seems to be a hydrophilic interaction such as ion–dipole or hydrogen bond interactions between a polar group (for example the carbonyl group) of *mer*-(+)-[Co(L-ala)₃] and the surroundings. An

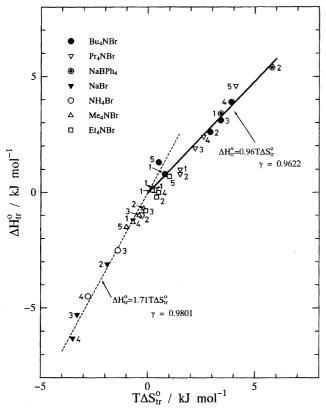


Fig. 3. Correlation between $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ for the transfer process of mer-(+)-[Co(L-ala)₃] from water to aqueous salt solutions. The values of $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ for the transfer to NaBr solutions were calculated from the data reported in Ref. 15. The number given beside each mark represents increasing sequence of salt concentration m_s . Each m_s value is given in Table 3.

attempt to clarify this origin is intended.

The second group is composed of Pr_4NBr , Bu_4NBr , and $NaBPh_4$, which result in positive ΔH°_{tr} and $T\Delta S^{\circ}_{tr}$. The linear correlation between ΔH°_{tr} and $T\Delta S^{\circ}_{tr}$ (solid line in Fig. 3) presented by

$$\Delta H_{\rm tr}^{\circ} = 0.96T\Delta S_{\rm tr}^{\circ} \quad (\gamma = 0.9622), \tag{3}$$

shows that the salting-in effects of these salts are driven by an increase in $T\Delta S_{\rm tr}^{\circ}$. A comparison of Eq. 3 with Eq. 2 can present a reasonable explanation for the finding that the salting-in effect of Pr₄NBr, Bu₄NBr, and NaBPh₄ is smaller than the salting-in effect of NaBr and NH₄Br (see Fig. 2). Since the slope of the compensation line between $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ for the salting-in effect of Pr₄NBr, Bu₄NBr, and NaBPh₄ is nearly unitary, the free energy change becomes extremely small.

It is generally accepted that Pr_4N^+ , Bu_4N^+ , and BPh_4^- ions increase the three-dimensional network structure of water. The idea that hydrophobic interaction is caused by a decrease in the hydration sphere due to attachment of hydrophobic molecules can explain positive enthalpy and entropy changes accompanying the hydrophobic interaction, that is, a decrease in the structured water molecules due to the hydrophobic interaction results in the positive enthalpy and entropy changes. 27

Thus, the positive $\Delta H_{\rm tr}^{\circ}$ and $\Delta S_{\rm tr}^{\circ}$ in the second group may be regarded as an indication of the hydrophobic interaction between mer-(+)-[Co(L-ala)₃] and Pr_4N^+ , Bu_4N^+ , or BPh_4^- ions. The fact that the data for NaBPh₄ lie on the same straight line as the data for Pr_4NBr and Bu_4NBr suggests that the positive and negative charges of Pr_4N^+ , Bu_4N^+ , and BPh_4^- do not affect the hydrophobic interaction. The magnitude of $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ for the transfer to the salt solutions with similar m_s (for example, see the points numbered as 2 in Fig. 3) increases in the order of $Pr_4NBr < Bu_4NBr < NaBPh_4$. This result suggests that the increase of the water structure increases in the order of $Pr_4N^+ < Bu_4N^+ < BPh_4^-$. Marcus has claimed the order of $BPh_4^- < Pr_4N^+ < Bu_4N^+$.

Definitive classification of Me₄NBr and Et₄NBr into either group seems to be difficult. The negative ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ for these salts agree with the feature in the first group. But the occurrence of the minimum in the salting-in effect profile (see Fig. 2) resembles the salting-in behavior of Pr₄NBr and Bu₄NBr. It has been reported that Me₄N⁺ ion has a breaking effect on the water structure and that Et₄N⁺ ion results in a borderline effect between the structure breaking and making effect. ^{26,28)} These results on the effects of Me₄NBr and Et₄NBr on the solubility of mer-(+)-[Co(L-ala)₃] seem to be consistent with the above-mentioned effect of these salts on the water structure.

Effects of Bu_4NBr on the Solubilities of Various mer-(+)-[Co(L-aa)₃]. As discussed in the preceding section, Bu_4N^+ ion brings about the hydrophobic interaction with mer-(+)-[Co(L-ala)₃]. To estimate the hydrophobicity of the side chains of some amino acids on the basis of this phenomenon, the solubilities of mer-[Co(gly)₃], mer-(+)-[Co(L- ser)₃], mer- (-+)- [Co(DL- aba)₃], mer- (-+)-[Co(DL- nval)₃], mer- (+)- [Co(L- val)₃], and mer- (+)-

 $[Co(L-leu)_3]$ in aqueous Bu_4NBr solutions were measured. These solubility data are tabulated in Table 4. The effects of Bu_4NBr are depicted in Fig. 4 by plot-

Table 4. Solubilities $(S_m \text{ and } S_c)$ of mer- $[Co(gly)_3]$, mer-(+)- $[Co(L-ser)_3]$, mer-(-+)- $[Co(DL-aba)_3]$, mer-(-+)- $[Co(L-leu)_3]$, and mer-(+)- $[Co(L-leu)_3]$ in Aqueous Bu₄NBr Solutions^{a)}

T/°C				mer	<i>mer-</i> (+)-[Co(L-val) ₃]					
			$m_{\rm s}/{\rm molkg^{-1}}$			$m_{\rm s}/{\rm mol~kg^{-1}}$				
	0.158	0.590	0.969	4.993	0.214 0.595 0.969					
		S	$I_{\rm m}/10^{-2}~{\rm molkg}^{-1}$	1		$S_{ m m}$	$/10^{-1} \text{mol kg}^-$	-1		
5	1.37(0.01)	1.32(0.01)				1.65(0.01)	1.67(0.02)			
10	1.68(0.01)	1.65(0.01)	1.55(0.01)	1.49(0.01)	1.20(0.01)	1.54(0.01)	1.63(0.01)	1.57(0.01)		
15	2.11(0.02)	2.05(0.01)	1.92(0.02)	1.86(0.01)	1.37(0.01)	1.38(0.01)	1.55(0.01)	1.53(0.01)		
20	2.62(0.01)	2.54(0.01)	2.39(0.04)	2.27(0.01)	1.56(0.01)	1.31(0.01)	1.43(0.02)	1.50(0.01)		
25	3.24(0.01)	3.13(0.01)	2.87(0.04)	2.77(0.02)	1.80(0.01)	1.23(0.01)	1.39(0.01)	1.50(0.01)		
30	3.94(0.02)	3.86(0.02)	3.38(0.02)	3.35(0.03)	2.07(0.02)	1.12(0.01)	1.42(0.01)	1.54(0.02)		
35	4.83(0.02)	4.68(0.01)		4.06(0.01)		1.08(0.01)	1.42(0.01)	1.61(0.01)		
40				4.79(0.03)		1.08(0.01)	1.44(0.02)	1.69(0.02)		
			$c_{\rm s}/{\rm moldm^{-3}}$				$c_{\rm s}/{ m moldm}^{-3}$			
	0.150	0.500	0.750	1.000	1.995	0.200	0.504	0.751		
		S	$L_{\rm c}/10^{-2}~{\rm moldm^{-1}}$	-3		S _c /	$10^{-1} \mathrm{mol} \mathrm{dm}^-$	-3		
25	3.32(0.01)	3.24(0.01)	2.99(0.04)	2.90(0.02)	1.90(0.02)	1.24(0.01)	1.41(0.02)	1.52(0.01)		
<i>T</i> /°C		me	er-(+)-[Co(L-ser)3]			-+)-[Co(DL-al	ba) ₃]		
			$m_{\rm s}/{ m molkg}^{-1}$				$m_{\rm s}/{ m molkg^{-1}}$			
	0.214	0.591	0.966	1.433	0.159	0.590	0.972	1.430		
		S	$\frac{1}{10^{-2}} \text{mol kg}^{-1}$	-1		$S_{ m m}$	$/10^{-2} \text{mol kg}^-$	-1		
5	0.417(0.005)	0.379(0.004)			1.04(0.01)	1.19(0.01)				
10	0.520(0.004)	0.484(0.006)	0.487(0.002)	0.386(0.001)	1.12(0.01)	1.22(0.01)	1.18(0.01)	1.15(0.01)		
15	0.676(0.004)	0.619(0.011)	0.625(0.006)	0.501(0.004)	1.26(0.01)	1.40(0.01)	1.36(0.01)	1.35(0.01)		
20	0.858(0.012)	0.815(0.009)	0.802(0.005)	0.652(0.004)	1.44(0.01)	1.64(0.01)	1.64(0.01)	1.64(0.02)		
25	1.11(0.01)	1.06(0.01)	1.04(0.01)	0.859(0.004)	1.67(0.01)	1.94(0.01)	2.00(0.02)	2.03(0.03)		
30	1.43(0.01)	1.20(0.01)	1.12(0.01)	0.944(0.010)	2.02(0.01)	2.37(0.02)	2.45(0.01)	2.50(0.04)		
35	1.50(0.01)	1.36(0.01)	1.24(0.01)	1.06(0.01)	2.40(0.02)	2.84(0.02)	2.99 (0.02)	3.21(0.03)		
40	1.67(0.01)	1.52(0.02)	1.38(0.02)	1.18(0.01)	2.84(0.02)	3.45(0.03)	3.72(0.02)	3.93(0.04)		
			$c_{\rm s}/{ m moldm}^{-3}$				$c_{\rm s}/{ m moldm}^{-3}$			
	0.201	0.502	0.750	1.005	0.151	0.500	0.752	1.001		
		S	$\frac{1}{c}/10^{-2} \text{mol dm}^{-1}$	-3		S _c /	10^{-2}mol dm^-	-3		
25	1.14(0.01)	1.10(0.01)	1.09(0.01)	0.901(0.001)	1.72(0.01)	2.00(0.01)	2.09(0.02)	2.13(0.03)		
T/°C		mer-	(-+)-[Co(DL-nv	/al) ₃]		mer-)3]			
,			$m_{\rm s}/{\rm molkg}^{-1}$,,,,		$\frac{mer-(+)-[\operatorname{Co}(\operatorname{L-leu})_3]}{m_s/\operatorname{mol} \operatorname{kg}^{-1}}$				
	0.164	0.590	0.969	1.429	0.589	0.969	1.435	2.124		
			$\frac{1}{10^{-2}} \text{mol kg}^{-1}$			S_{m}				
5	2.49(0.01)	3.31(0.03)	8		0.749(0.008)					
10	2.49(0.01)	3.33(0.01)	3.85(0.03)	3.72(0.04)	0.727(0.008)	0.850(0.008)	1.10(0.01)	2.07(0.02)		
15	2.46(0.01)	3.34(0.03)	3.78(0.02)	3.90(0.03)	0.715(0.015)	0.869(0.015)	1.19(0.01)	2.18(0.02)		
20	2.48(0.02)	3.27(0.04)	3.82(0.01)	4.06(0.03)	0.723(0.012)	0.929(0.013)	1.34(0.01)	2.55(0.01)		
25	2.49(0.02)	3.35(0.03)	3.89(0.04)	4.32(0.04)	0.741(0.005)	1.02(0.01)	1.56(0.02)	2.96(0.03)		
30	2.50(0.01)	3.37(0.05)	4.03(0.03)	4.73(0.02)	0.789(0.005)	1.16(0.01)	1.82(0.01)	3.54(0.06)		
35	2.53(0.02)	3.47(0.03)	4.28(0.04)	5.30(0.05)	0.873(0.011)	1.32(0.01)	2.18(0.03)	4.17(0.03)		
40	2.59(0.02)	3.65(0.04)	4.74(0.10)	6.35(0.15)	0.965(0.010)	1.52(0.03)	2.60(0.05)			
			$c_{\rm s}/{\rm moldm}^{-3}$				$c_{\rm s}/{ m moldm}^{-3}$			
	0.156	0.500	0.751	1.000	0.5000	0.751	1.005	1.301		
		S	$\frac{1}{10^{-2}} \text{mol dm}^{-1}$	-3		S _c /	10^{-3}mol dm^-	-3		
25	2.55(0.02)	3.45(0.02)	4.03(0.04)	4.56(0.03)	0.759(0.007)	1.06(0.01)	1.62(0.02)	3.13(0.04)		
	- (- = -)		- (- (-)	-(-//						

a) Errors defined as 95% confidence levels are given in parentheses.

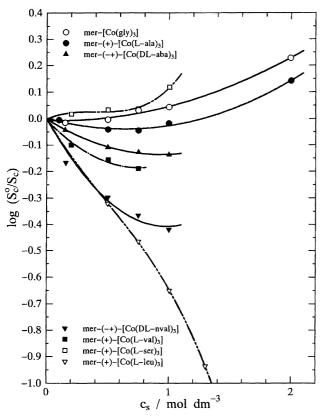


Fig. 4. Effect of Bu₄NBr on various mer-[Co(aa)₃] depicted by plotting $\log (S_c^{\circ}/S_c)$ against c_s .

ting $\log{(S_{\rm c}^{\circ}/S_{\rm c})}$ against $c_{\rm s}$. The salting-in effect of Bu₄NBr increases in the order of mer-(+)-[Co(L-ala)₃] < mer-(-+)-[Co(DL-aba)₃] < mer-(+)-[Co(L-val)₃] < mer-(+)-[Co(L-leu)₃]. The addition of Bu₄NBr to mer-[Co(gly)₃] and mer-(+)-[Co(L-ser)₃] solutions has a slight salting-out effect.

As shown in Fig. 5, when $\Delta H_{\rm tr}^{\circ}$ was plotted against $T\Delta S_{\rm tr}^{\circ}$ for the transfer process of these chelates from water to aqueous Bu₄NBr solutions, a single correlation line through all the data, including the data for mer-(+)-[Co(L-ala)₃], was obtained. This finding indicates that the effect of Bu₄NBr on the solubilities of all the chelates studied in this investigation has the same origin (hydrophobic interaction) as the effect on mer-(+)-[Co(L-ala)₃] discussed in the preceding section. The correlation is expressed by

$$\Delta H_{\rm tr}^{\circ} = 0.87T\Delta S_{\rm tr}^{\circ} \quad (\gamma = 0.9985).$$
 (4)

For mer-(+)-[Co(L-ala)₃], mer-(-+)-[Co(DL-aba)₃], mer-(-+)-[Co(DL-nval)₃], mer-(+)-[Co(L-leu)₃], both ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ are positive and increase with increasing m_s (see Fig. 5). The salting-in effect is driven by the increase in $T\Delta S_{tr}^{\circ}$. On the other hand, for mer-[Co(gly)₃] and mer-(+)-[Co(L-ser)₃] both ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ generally decrease with increasing m_s (see Fig. 5). The decrease in $T\Delta S_{tr}^{\circ}$ results in the salting-out effect.

The variation of $\log (S_c^{\circ}/S_c)$ with c_s shown in Fig. 4 is liable to be regarded as an indication of the strength of the hydrophobic interaction. But the term of $\log (S_c^{\circ}/S_c)$ is related

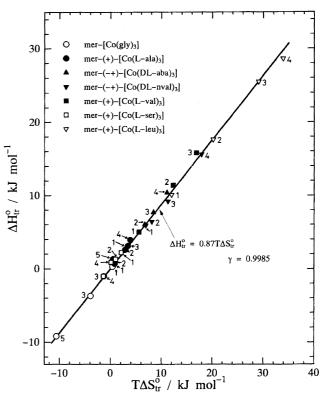


Fig. 5. Compensation relation between $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ for the transfer process of various mer-[Co(aa)₃] from water to aqueous Bu₄NBr solutions. The number given beside each mark represents increasing sequence of Bu₄NBr concentration m_s . Each m_s value is given in Table 4.

to $\Delta G_{\rm tr}^{\circ}$. As discussed in the preceding section, it is more reasonable to use $\Delta H_{\rm tr}^{\circ}$ or $T\Delta S_{\rm tr}^{\circ}$ rather than $\Delta G_{\rm tr}^{\circ}$ to estimate the hydrophobicity of side chains of amino acids.

Thus, ΔH_{tr}° or $T\Delta S_{tr}^{\circ}$ for the transfer of mer-(+)-[Co(L-aa)₃] from water to 0.97 mol kg⁻¹ Bu₄NBr solution is plotted against carbon atom numbers in side chains of the corresponding amino acids in Fig. 6. Both ΔH_{tr}° and $T\Delta S_{tr}^{\circ}$ increase with the increasing carbon atom numbers. This implies that the hydrophobic interaction of mer-(+)-[Co(L-aa)₃] with Bu₄N⁺ ion increases with increasing side chain length of amino acid and that the hydrophobicity increases in the order of glyH < serH < alaH < abaH < nvalH < valH < leuH.

The order of glyH < alaH < valH < leuH is consistent with the order based on several criteria for the hydrophobicity. This confirms the validity of the present approach using $[Co(aa)_3]$ as the model compound for amino acid residues of proteins. While the effect of alkyl chain branching on the hydrophobicity of aliphatic compounds seems not to give a concordant conclusion, 30 a comparison of the $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ values for mer-(+)- $[Co(L-val)_3]$ with the $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ values for mer-(-+)- $[Co(DL-nval)_3]$ suggests that the chain branching increases the hydrophobicity. Introduction of a hydrophilic hydroxyl group into alaH may be expected to reduce the hydrophobicity. The hydrophobicity order in this study is consistent with this expectation. Nozaki and Tanford have reported that the amino acids with aromatic rings such as tryptophan and phenylalanine have large hydrophobicity.

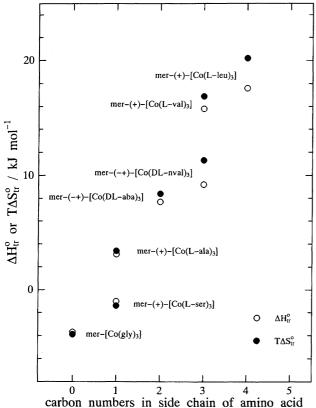


Fig. 6. Plot of $\Delta H_{\rm tr}^{\circ}$ or $T\Delta S_{\rm tr}^{\circ}$ for mer-[Co(aa)₃] against carbon atom numbers in side chains of amino acids. The values of $\Delta H_{\rm tr}^{\circ}$ and $T\Delta S_{\rm tr}^{\circ}$ correspond to the transfer from water to 0.97 mol kg⁻¹ Bu₄NBr solution.

Synthesis of $[Co(aa)_3]$ using these amino acids was also tried in this study but the attempt was unsuccessful. A synthetic effort would be developed in the near future.

While the correlation between ΔH_{tr}° or $T\Delta S_{tr}^{\circ}$ and the carbon atom numbers shown in Fig. 6 is too rough to estimate an increment of ΔH_{tr}° or $T\Delta S_{tr}^{\circ}$ per methylene group, the hydrophobic interaction of $[\text{Co}(\text{L-aa})_3]$ with Bu_4N^+ ion can provide useful information for the hydrophobicity of amino acids. Thus, it would be interesting to examine some properties of $[\text{Co}(\text{aa})_3]$ in Bu_4NBr solution such as volumetric property and viscosity, and to compare with the results so far reported for the amino acids themselves.

References

1) D. P. Kharakoz, *Biophys. Chem.*, **34**, 115 (1989).

- 2) K. B. Belibagl and E. Ayranc, *J. Solution Chem.*, **19**, 867 (1990).
 - 3) D. P. Kharakoz, J. Phys. Chem., 95, 5634 (1991).
- 4) A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss, *Can. J. Chem.*, **72**, 362 (1994).
- 5) M. M. Duke, A. W. Hakin, R. M. McKay, and K. E. Preuss, *Can. J. Chem.*, **72**, 1489 (1994).
- 6) Z. Yan, J. Wang, H. Zheng, and D. Liu, *J. Solution Chem.*, **27**, 473 (1998).
- 7) G. R. Hedwig and H. Høiland, *J. Solution Chem.*, **20**, 1113 (1991).
- 8) O. V. Kulikov, A. Zielenkiewicz, W. Zielenkiewicz, V. G. Badelin, and G. A. Krestov, *J. Solution Chem.*, **22**, 59 (1993).
- 9) A. W. Hakin, M. M. Duke, L. L. Groft, J. L. Marty, and M. L. Rushfeldt, *Can. J. Chem.*, **73**, 725 (1995).
- 10) G. R. Hedwig, J. D. Hastie, and H. Høiland, *J. Solution Chem.*, **25**, 615 (1996).
- 11) M. Kikuchi, M. Sakurai, and K. Nitta, *J. Chem. Eng. Data*, **41**, 1439 (1996).
- 12) M. Mizuguchi, M. Sakurai, and K. Nitta, *J. Solution Chem.*, **26**, 579 (1997).
- 13) a) Y. Yoshimura, *Inorg. Chim. Acta*, **207**, 65 (1993); b) Y. Yoshimura, *Bull. Chem. Soc. Jpn.*, **68**, 2305 (1995).
- 14) Y. Yoshimura, Bull. Chem. Soc. Jpn., 69, 2565 (1996).
- 15) Y. Yoshimura, Can. J. Chem., 76, 71 (1998).
- 16) R. Tenne and A. Ben-Naim, J. Phys. Chem., 80, 1120 (1976).
- 17) E. Iwamoto, Y. Tanaka, H. Kimura, and Y. Yamamoto, *J. Solution Chem.*, **9**, 841 (1980).
- 18) a) C-H. Chen, *J. Phys. Chem.*, **84**, 2050 (1980); b) C-H. Chen, *J. Phys. Chem.*, **85**, 603 (1981).
- 19) A. Delville, P. Laszlo, and A. Stockis, *J. Am. Chem. Soc.*, **103**, 5991 (1981).
- 20) D. Eisenberg, R. M. Weiss, T. C. Terwilliger, and W. Wilcox, *Faraday Symp. Chem. Soc.*, **17**, 109 (1982)
- 21) .Y. Nozaki and C. Tanford, J. Biol. Chem., 246, 2211 (1971).
- 22) B. E. Douglas and S. Yamada, *Inorg. Chem.*, **4**, 1561 (1965).
- 23) R. G. Denning and T. S. Piper, *Inorg. Chem.*, **5**, 1056 (1966).
- 24) R. D. Gillard and N. C. Payne, J. Chem. Soc. A, 1969, 1197.
- 25) Y. Yoshimura, Can. J. Chem., 67, 2108 (1989).
- 26) Y. Marcus, J. Solution Chem., 23, 831 (1994).
- 27) A. Ben-Naim, "Hydrophobic Interaction," Plenum Press, New York (1980).
- 28) P. R. Philip and C. Jolicoeur, *J. Phys. Chem.*, **77**, 3071 (1973).
- 29) D. Hecht, L. Tadesse, and L. Walters, *J. Am. Chem. Soc.*, **115**, 3336 (1993).
- 30) J. C. Ahluwalia, J. Indian Chem. Soc., 56, 115 (1979).